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Problem
• Subgraph Isomorphism Counting

Proposed model: Count-GNN
• Edge-centric message passing

• to capture fine grained structural information
• Query-conditioned graph modulation

• to adapt each graph to query individually
•

Experiments
• Extensive experiments demonstrate that Count-GNN significantly outperforms state-of-the-art models.

Ablation study

Isomorphisms counting

Experimental setupProblem: Subgraph Isomorphism Counting

C1: How to capture fine grained structural information?

C2: How to adapt the input graph to each query individually? 

Challenges:

• First challenge
• Exploit edge-centric message 

passing, in which each edge 
receives and aggregates from 
adjacent edges.

Isomorphism counting function missing neighborhood 
information

Full connected layer
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• Conventional GNNs
• GCN[4]
• GAT[5]
• GraphSage[6]
• GIN[7]
• DiffPool[8]

• GNN based Isomorphism Counting Models
• RGCN-DN,RGCN-SUM,RGIN-DN,RGIN-SUM[1]
• LRP[2]
• DMPNN-LRP[3]

• Count-GNN achieves 65x ~ 324x speedups over the classical VF2, 8x ~ 26x speedups 
over Peregrine

• Count-GNN is more efficient than other GNN-based isomorphism counting models
• Count-GNN is more accurate than Conventional GNN models  by at least 30% 

improvements in most cases.

• Ablation study
• Node-centric aggregation: impairs the performance
• Query-conditioned graph modulation : contributes 

to the performance

• Parameter sensitivity
• As K increases, the performance in terms of 

MAE and Q-error generally become better, only 
with one exception on Q-error when K = 4

• λ = 0.01 may result in an inferior performance. 
Interval [1e-5, 1e-3] might be a good range for 
superior performance of subgraph isomorphism 
counting.
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• Exact Methods
• VF2[9]
• Peregrine[10]

Parameter sensitivity

FiLM regularizer L2 regularizer

Overall-framework

Edge-centric aggregation

Query graph representation

Counter module

Overall objective

What’s missing in SOTA?

§ Node-centric scheme falls short of 
matching complex structures for 
isomorphism counting.

§ SOTA[1, 2, 3] models leverage a fixed 
graph representation to match with all 
possible queries.

• Second challenge
• Modulate the input graph 

conditioned on the query to adapt 
the whole graph representation of 
the input graph to each query.

§ Edge message initialization

§ Edge message passing

§ Query Readout

§ Graph Edge Representation

§ Graph Readout
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