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Abstract

Node classification is an important problem on graphs. While
recent advances in graph neural networks achieve promising
performance, they require abundant labeled nodes for train-
ing. However, in many practical scenarios, there often exist
novel classes in which only one or a few labeled nodes are
available as supervision, known as few-shot node classifica-
tion. Although meta-learning has been widely used in vision
and language domains to address few-shot learning, its adop-
tion on graphs has been limited. In particular, graph nodes in a
few-shot task are not independent and relate to each other. To
deal with this, we propose a novel model called Relative and
Absolute Location Embedding (RALE) hinged on the con-
cept of hub nodes. Specifically, RALE captures the task-level
dependency by assigning each node a relative location within
a task, as well as the graph-level dependency by assigning
each node an absolute location on the graph to further align
different tasks toward learning a transferable prior. Finally,
extensive experiments on three public datasets demonstrate
the state-of-the-art performance of RALE.

Introduction
Real-world entities often interact with each other and con-
nect into complex graphs, such as e-commerce graphs and
citation networks. Many analytical tasks on such networks
can be formulated as instances of node classification, e.g.,
predicting user intent on an e-commerce graph, and infer-
ring paper topic on a citation network. As a consequence,
the problem of node classification on graphs has attracted a
surge of research interest.

Traditional approaches for network analysis attempt to
engineer and exploit informative features from the graph
(Backstrom and Leskovec 2011), yet facing high cost. Re-
cently, graph neural networks (GNNs) (Wu et al. 2020)
emerge as a powerful family of graph representation learn-
ing techniques, which resort to the recursive aggregation of
information from neighboring nodes. The recursive neigh-
borhood aggregation is able to effectively exploit both graph
structures and node features, and attains state-of-the-art per-
formance on node classification.

Problem. Although effective in node classification on
graphs, GNNs often require a significant amount of labeled
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Figure 1: Illustration of few-shot node classification.

data in order to achieve satisfactory performance. In a typ-
ical setting for node classification, we are given a set of
classes (e.g., topics) fixed in advance, where each node (e.g.,
paper) belongs to one of the classes. The goal is then to pre-
dict the classes of the remaining unlabeled nodes. However,
in many scenarios, we often need to deal with novel classes
that we have not seen before. On one hand, there are some
existing classes known as the base classes where a sufficient
number of nodes per class are labeled. On the other hand,
the novel classes only have one or very few labeled nodes
per class as we just begin to tackle them. For instance, on
a toy citation network in Fig. 1(a), while there are abundant
labeled nodes for established topics like “SVM” and “Neu-
ral networks” (i.e., base classes), very few labeled nodes
are available for emerging topics like “Explainable AI” and
“Fair ML” (i.e., novel classes). In this paper, we study the
problem of node classification for the novel classes, where
each novel class only has one or a few labeled nodes, known
as few-shot node classification.

Prior work. Unfortunately, manually labeling a large num-
ber of papers in the novel classes is not only expensive but
also infeasible as there may not be enough papers in these
emerging topics. To rapidly enable novel classes without
a large number of examples, meta-learning (Vinyals et al.
2016; Snell, Swersky, and Zemel 2017; Finn, Abbeel, and
Levine 2017) has become a popular solution, which learns
a transferable prior from the base classes with sufficient ex-
amples, and adapts the prior to the novel classes.



While meta-learning has demonstrated promising results
for few-shot learning in vision and language domains, its
adoption in graph data has still been limited. Some recent
studies (Zhou et al. 2019; Yao et al. 2020) on few-shot node
classification follow the meta-learning paradigm. Specifi-
cally, they formulate few-shot node classification as a series
of classification tasks. In each task, they aim to predict the
class of the query node after adapting the transferable prior
on only a few support nodes, as shown in Fig. 1(b). The tasks
are further split into meta-train and meta-test tasks that en-
compass the base and novel classes, respectively. However,
in existing approaches, the dependencies between the nodes
in a task are not explicitly modeled and incorporated into the
transferable prior. While this is not a concern in other do-
mains as their instances are often taken as i.i.d, graph nodes
relate to each other and the inter-dependency is crucial to
learning node representations.

Challenges and present work. As discussed, it is crucial
to learn from the base classes how the nodes in a task de-
pend on each other as part of the transferable prior, i.e., to
exploit additional dependencies based on graph structures to
enhance the limited support set. However, there are two ma-
jor challenges should be addressed.

First, how do we capture the potentially long-ranged de-
pendencies between nodes within a task? Support and query
nodes may distribute far away from each other across the
graph, but state-of-the-art graph models do not capture long-
range dependencies between nodes residing at distant loca-
tions on the graph. While it is natural to consider the paths
between the nodes, it becomes extremely inefficient to sam-
ple paths between two distant nodes as the vast majority of
random walks from one node will not reach the other within
a given number of steps. Second, how do we align the de-
pendencies across tasks to converge on a common transfer-
able prior? Each task encapsulates its unique task-specific
dependencies between nodes. Thus, to extract common pat-
terns from different tasks, a global coordination is needed to
align the tasks w.r.t. some invariant on the graph.

To address the two challenges, we leverage the concept of
hub nodes (Jeh and Widom 2003; Zhu et al. 2013). Hubs are
structurally important nodes on the graph, as measured by
network centrality scores such as degree or PageRank (Page
et al. 1999). Intuitively, hubs serve as the “backbone” of the
graph that encode crucial graph information. They play dual
roles in our solution. On one hand, to capture the dependen-
cies between distant nodes in a task, we utilize hubs for the
efficient sampling of important paths. As shown in Fig. 2(a),
the dotted lines indicate hub-passing paths from the support
nodes to a query node, which can be easily constructed and
also carry elevated significance due to the high reachability
and importance of hubs on the graph. These paths identify
the dependency of a query node on the task-specific sup-
port nodes, which intuitively describe the relative location
of the query within the task. On the other hand, to align
the dependencies across tasks, we utilize hubs as a set of
global references. As illustrated in Fig. 2(b), we consider
the paths between a query node and the hubs over the whole
graph. These paths identify the dependency of a query in any
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Figure 2: Hub-based relative and absolute locations.

task on the graph-invariant hub nodes, which intuitively de-
scribe the absolute location of the query on the graph. While
the task-level relative location captures node dependencies
within a task, the graph-level absolute location facilitates
task alignment toward a common transferable prior.

Contributions. In summary, we propose Relative and Ab-
solute Location Embedding (RALE) for few-shot node clas-
sification on graphs, to effectively learn a transferable prior
capturing the dependencies between nodes in few-shot tasks.
Our contributions are three-fold: (1) We introduce a new use
of hubs as a key enabler for the relative and absolute lo-
cations; (2) We propose a novel model RALE to explicitly
learn a dependency-aware prior through location embedding
at both task and graph levels; (3) We conduct extensive ex-
periments on three public datasets, and achieve promising
results over state-of-the-art approaches.

Related Work

Graph representation learning. Graph embedding has
been extensively studied due to its ability to learn low-
dimensional and structure-preserving representations (Per-
ozzi, Al-Rfou, and Skiena 2014; Grover and Leskovec 2016;
Cao, Lu, and Xu 2015; Yang, Cohen, and Salakhutdinov
2016; Wang, Cui, and Zhu 2016; Yang et al. 2017; Zhang
et al. 2018; Liu et al. 2017, 2018; Wang et al. 2017). They
typically employ a direct embedding lookup to associate
nodes through various local structures such as skip-grams
(Mikolov et al. 2013) and proximity (Tang et al. 2015). More
recently, GNNs (Kipf and Welling 2017; Hamilton, Ying,
and Leskovec 2017; Veličković et al. 2018) utilize a power-
ful scheme of recursive neighborhood aggregation to exploit
deeper graph structures and node contents jointly. State-of-
the-art GNNs often consider more complex structures (Ying
et al. 2018; Morris et al. 2019; Ma et al. 2019b; Pei et al.
2020; Xu et al. 2020), various forms of convolution (Ma
et al. 2019a; Jiang, Ji, and Li 2019), and graph isomorphism
(You, Ying, and Leskovec 2019; Xu et al. 2019).

Meta-learning. Meta-learning (Santoro et al. 2016; Vinyals
et al. 2016) has been widely used in various domains
to address few-shot problems. For example, GPN (Liu
et al. 2019a) resorts to prototypical meta-learning (Snell,
Swersky, and Zemel 2017) for few-shot image classifica-
tion; HiCE (Hu et al. 2019) leverages MAML-based meta-
learning (Finn, Abbeel, and Levine 2017) for few-shot re-



gression of embedding vectors for out-of-vocabulary words.
Recent studies also explore meta-learning on graphs (Gar-
cia and Bruna 2018; Liu et al. 2019b,a; Xiong et al. 2018;
Zhang et al. 2020), but they typically only use the graphs as
auxiliary input to complement the original data.

Few-shot learning on graphs. While GNNs are generally
semi-supervised (Kipf and Welling 2017), there exist efforts
to reduce labeling requirement (Sun, Lin, and Zhu 2020) or
even adopt an unsupervised paradigm (Hamilton, Ying, and
Leskovec 2017; Velickovic et al. 2019). However, they do
not address few-shot node classification, where novel node
classes are encountered in the testing phase. Among recent
few-shot learning on graphs, meta-tail2vec (Liu et al. 2020)
formulates a few-shot regression problem to learn robust tail
node embeddings, GSM (Chauhan, Nathani, and Kaul 2020)
focuses on the few-shot graph-level classification of novel
graphs, and GFL (Yao et al. 2020) explores few-shot clas-
sification on novel graphs for the same set of node classes.
Finally, Meta-GNN (Zhou et al. 2019) adopts the same few-
shot node classification setting in our paper, but it does not
model the crucial node dependencies in each task.

Preliminaries
In this section, we introduce the problem definition and
episodic meta-learning.

Few-shot node classification. Let G = (V, E ,X, C, `) de-
note a graph, where V is the set of nodes, E is the set
of edges, X ∈ R|V|×dX is the feature matrix with dX as
the number of features, C is the set of node classes, and
` : V → C is a label function to map a node v ∈ V to its
class `(v) ∈ C.

In few-shot node classification, we have C = Cb ∪ Cn
where Cb and Cn are the set of base and novel classes respec-
tively, such that Cb∩Cn = ∅. A sufficient number of nodes in
the base classes are labeled, i.e., their label mapping by ` is
known. Subsequently, given any subset of m novel classes,
we aim to train a classifier with only a few (say, k) labeled
nodes for each novel class, in order to predict the classes of
the remaining unlabeled nodes among the m classes. This is
called m-way k-shot node classification.

Episodic meta-learning. We adopt the episodic paradigm,
which has shown great promise in few-shot learning. We em-
ploy the base classes Cb and novel classes Cn as the meta-
train and meta-test sets, respectively. Both of them are for-
mulated as a series of tasks (i.e., episodes).

On one hand, to construct a meta-train task t, a subset of
m classes are sampled from the base classes Cb. t consists of
the support set St and query set Qt. The support set samples
k nodes from each of the m classes (i.e., m-way k-shot),
denoted as St = {(vt,1, `(vt,1)), ..., (vt,m×k, `(vt,m×k))},
while the query set Qt = {(v∗t,1, `(v∗t,1)), ..., (v∗t,n, `(v

∗
t,n))}

includes n different nodes from the same m classes. The
support set St serves as the labeled training set in task t, on
which the model is trained to ultimately minimize the loss of
its predictions on the query set Qt. Given a series of meta-
train tasks, the goal is to learn a transferable prior that can
be applied to meta-test tasks.

On the other hand, a meta-test task t′ is sampled from
the novel classes Cn in a similar m-way k-shot fashion.
There is also a support set St′ consisting of k labeled nodes
from each of the m novel classes, as well as a query set
Qt′ = {v∗t′,1, ..., v∗t′,n} consisting of n unlabeled nodes from
the same m classes. The prior learned from meta-train is
updated on the support set St′ for adapting to the m novel
classes, and the adapted model is used for prediction on the
query set Qt′ .

Proposed Model: RALE
We first give an overview of the proposed model RALE,
as illustrated in Fig. 3. Given a graph and few-shot task in
Fig. 3(a), we resort to relative and absolute location embed-
ding to capture and align node dependencies in Fig. 3(b).
Specifically, we sample a set of paths based on hubs at both
the task and graph levels, and employ a graph encoder and
a path encoder to model the dependencies through the sam-
pled paths. Finally, in Fig. 3(c), dependency-aware few-shot
node classification is performed in a meta-learning setup.

In the following, we introduce an abstraction of loca-
tion embedding, which is then materialized at the task and
graph levels using hubs. Finally, we present the overall
dependency-aware meta-objective.

Abstraction of Location Embedding
We design the general methodology of embedding the loca-
tion of a node v ∈ V w.r.t. an arbitrary set of reference nodes
R ⊂ V . Let eRv ∈ Rdl denote the dl-dimensional location
embedding vector of v w.r.t. R, which captures the depen-
dency of v onR in the context of the graph.

Naturally, a graph encoder such as state-of-the-art GNNs
is able to contextualize nodes on the graph. However, GNNs
only explicitly preserve the structures between nodes that are
within a small number of hops of each other, as deep GNNs
often cause the “over-smoothing” effect (Li, Han, and Wu
2018; Xu et al. 2018; Pei et al. 2020). In other words, GNNs
cannot directly model the dependency between two poten-
tially distant nodes on the graph, which motivates us to fur-
ther exploit a path encoder. More specifically, the depen-
dency between any two nodes v and u can be derived from
the paths connecting them. Let Pu,v be the set of paths, sub-
ject to some maximum length, between u and v. Then, the
location embedding can be produced by

eRv = φ({Pu,v : u ∈ R}; θg, θp), (1)
where φ is the embedding function. Specifically, φ requires
as input a set of path sets between the target node v and
each reference node u ∈ R, and is parameterized by the
graph encoder weights θg and path encoder weights θp. In
the following, we introduce the details of the encoders.

Graph encoder. We employ GNNs (Wu et al. 2020) to con-
textualize nodes on a graph. Let φg(·; θg) denote a GNN
encoder parameterized by θg . Most GNNs follow a neigh-
borhood aggregation scheme: each node receives messages
from its neighbors recursively in multiple layers. Specifi-
cally, in each layer of φg(v; θg),

hi
v =M(hi−1

v , {hi−1
u ,∀u ∈ Nv}; θg), (2)
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Figure 3: Overview of the proposed model RALE.

where hi
v ∈ Rdi is the di-dimensional embedding vector

of node v in the i-th layer, Nv is the set of neighbors of v,
andM(·) is the message passing function for neighborhood
aggregation. Note that the input layer is given by the raw
node features, i.e., h0

v ≡ xv; for the last layer, we simply
write the output as φg(v; θg) = hv ∈ Rdg .

Path encoder. Given a path p = (v1, v2, ..., vs) on the graph,
the graph encoder outputs a corresponding sequence of rep-
resentations P = φg(p; θg) = (hv1 ,hv2 , ...,hvs), noting
that the function φg is applied to each node in the sequence.
The path encoder takes in the representation sequence P and
produces a path embedding p ∈ Rdp for path p, as follows.

p = φp(P ; θp), (3)
where φp(·; θp) is a sequence model parameterized by θp,
such as recurrent neural networks (Hochreiter and Schmid-
huber 1997; Chung et al. 2014), and self-attention with po-
sitional encoding (Vaswani et al. 2017).

Location embedding. Using the graph and path encoders,
we generate the location embedding for node v w.r.t. a single
reference node u based on the set of paths Pu,v , as follows.

e{u}v = AGGR({φp(φg(p; θg); θp) : ∀p ∈ Pu,v}), (4)
where AGGR(·) is an aggregation function such as mean-
pooling. Subsequently, given a set of reference nodesR, the
overall location embedding of v can be computed as

eRv = φ({Pu,v : u ∈ R}; θg, θp)

= AGGR({e{u}v : ∀u ∈ R}). (5)

Task and Graph-level Dependencies with Hubs
A unique nature of graph data is the dependencies between
nodes, which do not follow the usual i.i.d. assumption. In a
few-shot task, the support and query nodes may reside at dis-
tant locations on the graph. To capture long-range dependen-
cies between distant nodes, we resort to location embedding
materialized at both the task and graph levels by exploiting
hub nodes (Jeh and Widom 2003; Zhu et al. 2013). Hubs are
nodes with high network centrality scores such as degree or
PageRank (Page et al. 1999), and thus are important nodes
underpinning the graph structure. Let H ⊂ V denote the set
of hubs consisting of the top |H| nodes ranked by some cen-
trality measure. In particular, hubs play two crucial roles at
the task and graph levels, respectively.

Task-level relative location. Consider a few-shot task t =
(St, Qt). To capture the dependencies between the nodes in
task t, we assign each node v a relative location (RL) within
the task, taking the task-specific support nodes St as the ref-
erence nodes. Specifically, ∀v ∈ St ∪Qt, its RL embedding
w.r.t. St is denoted eSt

v ∈ Rdr , given by
eSt
v = φ({Ps,v : s ∈ St}; θg, θp). (6)

The set of paths Ps,v can be sampled by performing ran-
dom walks starting from the support node s and ending at the
target node v, subject to a maximum path length lp. How-
ever, when s and v are distant to each other on the graph,
such naı̈ve random walks can be remarkably inefficient, as
the vast majority of walks starting from s will fail to reach v
in lp steps. To improve the sampling efficacy, we consider
paths passing through hubs, which have two major bene-
fits. Firstly, they can be efficiently constructed, since hubs
are easily reachable on the graph due to their high network
centrality. Secondly, they tend to have elevated significance,
due to the presence of structurally important hubs.

Specifically, we first sample path segments up to length
lp/2, starting from s and v, respectively. For instance, given
a support node s = v8 and target node v = v6, in Fig. 3(b1)
we sample path segments from v8 (e.g., v8 → v9, v8 →
v7 → v6), as well as from v6 (e.g., v6 → v3 and v6 → v9).
While very few of these segments would end at v6 or v8 di-
rectly, a significant number of them would end at a hub such
as v3 or v9. Among the segments ending at a hub, those start-
ing from s and from v can be further joined on the common
hubs, which readily results in more paths between s and v
up to length lp. In our example, as v3 and v9 are hubs, the
segments can join into a path p2: v8 → v9 → v6 between v8

and v6, as shown in Fig. 3(b2).

Graph-level absolute location. While RL embedding mod-
els node dependencies specific to each task, in order to learn
a common transferable prior, the task-level dependencies
must be aligned across tasks at the graph level. To this end,
we use the hubs H as the set of global references which are
invariant on the graph, and assign every node an absolute
location (AL) on the graph. Specifically, ∀v ∈ V , its AL
embedding w.r.t.H is denoted as eHv ∈ Rda , given by

eHv = φ({Ph,v : h ∈ H}; θg, θp). (7)
In particular, we need to sample paths between each hub h

and the target node v as input for the path encoder. As hubs



are easily reachable from most parts of the graph, there is
no efficiency concern using straightforward random walks.
In fact, we can simply re-use the path segments that end at a
hub, which are already available from RL embedding.

Dependency-aware Meta-Objective
We adopt the episodic meta-learning framework of MAML
(Finn, Abbeel, and Levine 2017) for few-shot node classi-
fication. MAML is flexible to work with any model with
gradient-based optimization, and learns a prior to enable
rapid adaptation to new tasks with only a few gradient up-
dates. More specifically, the prior is adapted on each task t
by updating a few gradient steps w.r.t. the loss on its support
nodes St, and the task loss calculated on its query nodes Qt

is then backpropagated to optimize the prior.

Dependency-aware classification layer. As illustrated in
Fig. 3(c), for node classification, we utilize not only the node
embedding vector to capture graph context, but also the RL
and AL embedding vectors to capture long-range dependen-
cies. Consider a target node v in task t; v can be either a
support or query node whose loss is to be computed. Let
ψ(·; Θ) denote the classification layer, as follows.

ψ(v; Θ) = SOFTMAX
(
σ(W

[
hv‖eSt

v ‖eHv
]
)
)
, (8)

where a softmax classifier is used for m-way classification
in task t. Here ‖ is the concatenation operator to augment the
node embedding hv ∈ Rdg with RL embedding eSt

v ∈ Rdr

and AL embedding eHv ∈ Rda , W ∈ Rm×(dg+dr+da) is a
weight matrix, σ(·) is an activation function (e.g., ELU), and
Θ = {W, θg, θp} denotes all the learnable parameters.

Meta-objective. To adapt to task t, we employ the cross-
entropy loss on its support set St among the m classes in the
task. By mapping them classes to indices {1, 2, . . . ,m}, we
calculate the support loss L(St; Θ) as
L(St; Θ) = −

∑
v∈St

∑m
i=1 I`(v)=i ln(ψ(v; Θ)[i]), (9)

where I is an indicator function, and ψ(v; Θ)[i] is the i-th el-
ement of ψ(v; Θ) ∈ Rm. By updating the model parameters
Θ with one (or a few) gradient step(s) w.r.t. the support loss,
we obtain the parameters Θ′ that is adapted to the task:

Θ′ = Θ− α∂L(St;Θ)
∂Θ , (10)

where α is the learning rate of the adaptation.
The task loss can be further calculated on the query set

Qt using the updated model Θ′, i.e., L(Qt; Θ′). Therefore,
given meta-train tasks Ttr, the overall meta-objective can be
optimized as follows.

Θ∗ = arg minΘ

∑
t∈Ttr L(Qt; Θ− α∂L(St;Θ)

∂Θ ). (11)
The learned prior Θ∗ is further adapted to support set St′ of
each meta-test task t′ ∈ Tts, before testing on query set Qt′ .

Algorithm and complexity. The training algorithm consists
of two stages. The first stage involves the sampling of path
segments and the construction of paths, which only needs
to be done once as precomputation. The second stage op-
timizes the meta-objective over the meta-train tasks, which
can reuse the paths constructed earlier. The pseudocode and
complexity analysis are included in the supplementary.

Table 1: Summary of datasets.

Nodes Edges Features Classes (Train/Val/Test)

Amazon 13,381 245,778 767 10 (5/2/3)
Email 909 13,733 128 28 (15/6/7)
Reddit 231,371 11,606,876 602 41 (25/6/10)

Experiments
In this section, we conduct a comprehensive empirical evalu-
ation on RALE, including a comparison with state-of-the-art
approaches and model analysis.

Experimental Setup

Datasets. We employ three public real-world datasets in
our experiments. (1) Amazon (Hou et al. 2020) is an e-
commerce network, in which each node is an item and each
edge denotes the co-purchasing relationship by a common
user. (2) Email (Yin et al. 2017) is a communication net-
work between members from a large research institution.
Each node is a member and each edge denotes an email ex-
change between two members. (3) Reddit (Hamilton, Ying,
and Leskovec 2017) is a social network, in which each node
is a discussion post and each edge denotes that two posts are
commented by a common user. We summarize the datasets
in Table 1. More details and any processing on the datasets
are described in the supplementary.

Training and testing. We randomly split the node classes
into training (i.e., the base classes), validation and testing
(i.e., the novel classes), as presented in Table 1. In particu-
lar, the base classes are used to construct meta-train tasks to
learn a transferable prior, whereas the novel classes are used
to construct meta-test tasks for evaluation. The random split-
ting is repeated five times, and for each split four random
initializations are used for training. We report the average
classification accuracy over these repetitions.

Baselines. We compare with competitive baselines from the
following three categories.
• GNNs: We experiment with three established GNN archi-

tectures, namely, GCN (Kipf and Welling 2017), Graph-
SAGE (Hamilton, Ying, and Leskovec 2017) and GAT
(Veličković et al. 2018). For each architecture, we fol-
low the same train and test strategy. During training,
we optimize a GNN model for node classification on all
base classes; during testing, we deploy the same GNN
by reusing and fixing the trained parameters of neighbor-
hood aggregation layers, but updating the parameters of
the classification layer on the support set of each new task
before predicting the classes of the query set.

• GNN+’s: We consider the same three architectures, re-
sulting in GCN+, GraphSAGE+, GAT+. Each architec-
ture also employs a GNN model pre-trained on the base
classes; during testing, we use all trained parameters as
initialization only, and fine-tune them on the support set
before making predictions on the query set.

• Meta-learning models: We compare with Meta-GNN
(Zhou et al. 2019), which trains a GNN for few-shot



Table 2: Accuracy (percent) of RALE and baselines. In each row, the best result is bolded and the second best is underlined.
RALE’s improvement is calculated relative to the best baseline, with the corresponding p-value under two-tail paired t-test.

GCN GraphSAGE GAT GCN+ GraphSAGE+ GAT+ Meta-GNN Proto-GNN RALE impr. p-value

Amazon
(2-way)

1-shot 71.97 63.19 72.61 70.86 68.36 66.99 73.20 68.91 78.07 +6.65% 0.007
3-shot 78.67 63.15 78.18 72.66 69.75 76.07 74.45 76.41 84.17 +6.99% 0.021
5-shot 79.46 64.71 85.18 79.84 68.44 85.45 76.58 79.67 84.50 -1.11% 0.437

Email
(5-way)

1-shot 43.15 40.25 43.11 47.15 43.48 40.82 47.21 35.47 51.82 +9.76% < 0.001
3-shot 53.29 45.56 41.06 50.51 44.28 35.83 55.64 40.93 59.47 +6.88% 0.002
5-shot 58.19 48.38 37.24 58.37 47.01 33.52 58.76 42.38 65.46 +11.40% < 0.001

Reddit
(5-way)

1-shot 20.02 41.61 19.95 20.13 35.89 19.99 46.42 44.95 48.63 +4.76% < 0.001
3-shot 20.16 47.00 20.15 20.21 49.11 20.02 51.28 51.60 56.85 +10.17% < 0.001
5-shot 20.40 50.53 20.12 20.41 51.30 20.14 53.33 52.57 57.45 +7.73% 0.029

node classification under the MAML-based meta-learning
framework. We also implement prototypical networks
(Snell, Swersky, and Zemel 2017) on graphs, called
Proto-GNN. Both models do not capture long-range node
dependencies in tasks. For all meta-learning models in-
cluding our RALE, we choose GraphSAGE as the GNN
architecture as it performs better than other architectures
when coupled with these models. For RALE, we use self-
attention (Vaswani et al. 2017) as the path encoder.

Parameters and settings. For each method, we tune and
select their hyperparameters and settings based on validation
and guidance from the literature.

For all GNNs and GNN+’s, we employ two layers, and
further tune the dropout probability to 0.6, the dimension
of the hidden layers to 32, as well as the learning rates for
base class training and novel class updating or fine-tuning to
0.001 and 0.01, respectively. For specific architectures, we
use 8 heads for the multi-head attention mechanism in GAT,
and apply the mean aggregator for GraphSAGE.

For all meta-learning methods, we use the same parame-
ters in the above for the base GNN architecture, with a meta-
learning rate of 0.001. We also tune the dropout rate, and find
that Meta-GNN and Proto-GNN is optimal when no dropout
is used, whereas for RALE we use the dropout rate of 0.4
on the Amazon dataset and 0.5 on others. For MAML-based
approaches, we further tune the number of gradient updates
when adapting to the support set, which is set to 2 for Meta-
GNN and 1 for RALE, as well as the learning rate of adapta-
tion α, which is set to 5.0 for both on the Amazon and Reddit
datasets, and 0.2 on the Email dataset (α = 0.5 is applied in
Email 1-shot setting for RALE).

Finally, we report the default settings for hubs and ran-
dom walks in our model RALE. We rank all nodes by their
PageRank scores in a descending order, and choose the top
5% nodes as hubs. The 5% here is called the hub ratio,
i.e., |H|/|V|. To sample paths for a given task, we perform
w = 200 random walks of length l = 50 starting from each
node in the task (Perozzi, Al-Rfou, and Skiena 2014). A slid-
ing window of lp/2 is applied on each sampled walk to ex-
tract path segments. Segments ending with a hub are further
joined to form paths up to length lp = 6. We will further in-
vestigate the impact of these parameters in our experiments.

Performance Comparison
Table 2 shows the performance comparison with baselines
on few-shot node classification, using 1, 3 and 5 shots on
each dataset. We make the following observations.

Firstly, between each GNN and its GNN+ counterpart, no
consistent winner emerge. While GNN+’s with additional
fine-tuning on the neighborhood aggregation layers can po-
tentially benefit from the support set, they may overfit to the
support set due to the small number of shots. The results im-
ply that straightforward fine-tuning cannot work very well
in few-shot settings.

Secondly, Meta-GNN and Proto-GNN can only achieve
comparable or slightly better performance than GNNs and
GNN+’s. This demonstrates that, although meta-learning is
promising in few-shot learning, without modeling node de-
pendencies its advantage is rather limited on graph data due
to the non-i.i.d. nodes.

Thirdly, RALE outperforms all baselines with statis-
tical significance, demonstrating the benefit of capturing
and aligning node dependencies. The only exception is on
the Amazon dataset with 5 shots, where RALE is worse
than GAT/GAT+, although the difference is not statisti-
cally significant (p = 0.437). The possible reason is that
the co-purchasing ties between diverse items on a large e-
commerce platform like Amazon are weaker than email ex-
changes between users or topical relatedness between posts
participated in by the same user on social networks. Thus, it
becomes less important to capture the dependencies, and the
attention mechanism in GAT/GAT+ is more suited to weigh-
ing diverse neighbors especially when given more shots.

Lastly, as we use more shots for the support set, all meta-
learning approaches steadily perform better too. In contrast,
the performance of GNNs and GNN+’s fluctuates without
a clear pattern. The difference implies again that GNNs and
GNN+’s are not designed to work on few-shot setting, where
a modest increase in the number of shots does not help much
to improve their performance.

Model Analysis
We analyze the behavior of our model RALE in several as-
pects, including an ablation study to show the contribution
from different modules, an investigation on the hubs and ran-
dom walks, as well as an analysis of parameter sensitivity.



Figure 4: Ablation study.

Ablation study. We compare RALE with its three degener-
ate versions, including the version without the task-level RL
embedding (RALE\r), without graph-level AL embedding
(RALE\a), and without both (RALE\ar).

From Fig. 4, several observations can be made. Firstly,
RALE\ar has the lowest accuracy, which is not surprising
as it does not model any long-range dependency. Secondly,
both RALE\r and RALE\a perform better than RALE\ar,
and RALE\a is often better than RALE\r. Intuitively, there
is little for AL embedding to align across tasks without RL
embedding within tasks, whereas RL embedding captures
task-specific dependencies which can still be distilled to
some extent even without explicit global alignment. Lastly,
the full model RALE consistently achieves the best perfor-
mance, showing the necessity to not only capture dependen-
cies in individual tasks but also align them on the graph.

Hubs and random walks. In the following, we vary one
parameter at a time and fix the others as their default values
given in experimental setup. We only show the 1-shot results
on Amazon dataset, as other datasets show similar trends.

In RALE, hubs facilitate path sampling within tasks and
global coordination across tasks. With no or few hubs, it be-
comes unlikely to sample enough paths of significance be-
tween two distant nodes, causing low coverage ratio (i.e.,
fraction of node pairs within tasks that are connected by
sampled paths). In Fig. 5(a), when we increase the hub ra-
tio, the coverage ratio and the corresponding classification
accuracy both increase and converge around hub ratio of 1–
5%. The strong correlation between the coverage ratio and
accuracy shows that our hub-based paths are the key to ef-
fectively capturing dependencies.

Next, we study the impact of random walk parameters. We
also compare to the alternative strategy without hubs, i.e., di-
rect path sampling instead of constructing from hub-ending
segments. As shown in Figs. 5(b)–(d), increasing maximum
path length lp, number of walks per node w and walk length
l all lead to consistently higher coverage ratio and classifi-
cation accuracy whether using hubs or not, due to more ran-
dom walk samples. However, under the same settings, using
hubs give much higher coverage and accuracy than without
hubs, showing the efficacy of our hub-based strategy. In par-
ticular, with hubs the coverage and accuracy will converge
much quicker (e.g., lp ∼ 6, w ∼ 100, l ∼ 50), whereas with-
out using hubs much more random walks (i.e., much larger
lp, w, l) are needed to achieve similar coverage and accuracy.
Note that more random walks require more computational
time, as further discussed in the supplementary.

(a) Hub ratio (b) Max. path length lp

(c) No. of walks per node w (d) Walk length l

Figure 5: Analysis of hubs and random walks.

(a) Embedding dimension d (b) Adaptation learning rate α

Figure 6: Analysis of parameter sensitivity.

Parameter sensitivity. We study the sensitivity of two hy-
perparameters in 1-shot setting. In Fig. 6(a), we vary the em-
bedding dimension d of our encoders between 8 and 128
(all encoders use the same d). While a very small or large d
results in inferior performance, d = 32 appears to be a ro-
bust setting across datasets. In Fig. 6(b), we vary the learning
rate of adaptation α between 0.01 and 100. We observe that
[0.1, 10] is generally a good range for α on our datasets, al-
though different datasets may have different optimal values
attributed to the various relationships between tasks.

Conclusion
In this paper, we studied the few-shot node classification
on graph, to deal with novel classes with limited labeled
nodes. While meta-learning has been widely used on few-
shot vision and language tasks, nodes on a graph are funda-
mentally different for their non-i.i.d. nature. Unfortunately,
existing meta-learning approaches do not explicitly capture
the potentially long-ranged dependencies between nodes in a
task. Thus, we propose RALE, a novel meta-learning model
for few-shot node classification through hub-based relative
and absolute location embedding. While relative locations
capture the task-level dependency between nodes within a
task, absolute locations capture the graph-level dependency
to align the tasks. Extensive experiments show that RALE
significantly outperforms the state-of-the-art baselines.
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