Learning to Pre-train Graph Neural Networks

Yuanfu Lu¹, Xunqiang Jiang¹, Yuan Fang², Chuan Shi¹

¹Beijing University of Posts and Telecommunications, Beijing, China

²Singapore Management University, Singapore

Background

Code and datasets can be found in https://yuanfulu.github.io

GNNs

node-level representation

$$egin{aligned} \mathbf{h}_v^l = & \Psi(\psi; \mathcal{A}, \mathcal{X}, \mathcal{Z})^l \ = & \mathrm{UPDATE}(\mathbf{h}_v^{l-1}, \ & \mathrm{AGGREGATE}(\{(\mathbf{h}_v^{l-1}, \mathbf{h}_u^{l-1}, \mathbf{z}_{uv}) : u \in \mathcal{N}_v\})) \end{aligned}$$

graph-level representation

$$\mathbf{h}_{\mathcal{G}} = \Omega(\omega; \mathbf{H}^l) = \text{Readout}(\{\mathbf{h}_v^l | v \in \mathcal{V}\})$$

Pre-train GNNs

Pre-training

on a large graph-structured dataset (e.g., multiple small graphs or a large-scale graph)

$$\theta_0 = \operatorname{arg\,min}_{\theta} \mathcal{L}^{pre}(f_{\theta}; \mathcal{D}^{pre})$$

Fine-tuning

on downstream tasks

$$\theta_1 = \theta_0 - \eta \nabla_{\theta_0} \mathcal{L}^{fine}(f_{\theta_0}; \mathcal{D}^{tr})$$

 θ_0 is pre-trained without accommodating the adaptation in fine-tuning

A gap between pre-training and fine-tuning!

L2PGNN: Learn to Pre-train GNNs

C1: How to narrow the gap caused by different optimization objectives? C2: How to simultaneously preserve node- and graph-level information?

- Existing methods fall into a two-step paradigm with a gap
- Solution: learn to pre-train (meta learning)

- SOTAs either only consider the node level or require supervision for graph-level pre-training
- Solution: intrinsic self-supervision

Task Construction

the pre-training data

$$\mathcal{D}^{pre} = \{\mathcal{G}_1, \mathcal{G}_2, \dots, \mathcal{G}_N\}$$

► A task involving a graph

$$\mathcal{T}_{\mathcal{G}} = \left(\mathcal{S}_{\mathcal{G}}, \mathcal{Q}_{\mathcal{G}}\right)$$

- gradient descent w.r.t. the loss on S_G
- optimize the performance on Q_G
- ightharpoonup simulating the training and testing in $\mathcal{G} = \{\mathcal{V}, \mathcal{E}, \mathcal{X}, \mathcal{Z}\}$ the fine-tuning step

(a) An Example of Graph

(b) Task Construction

Parent Task

(c) Dual Adaptation in Self-supervised Base Model

Self-supervised Base Model

node-level aggregation

$$\mathcal{L}^{node}(\psi; \mathcal{S}_{\mathcal{G}}^{c}) = \sum_{(u,v) \in \mathcal{S}_{\mathcal{G}}^{c}} - \ln(\sigma(\mathbf{h}_{u}^{\top}\mathbf{h}_{v})) - \ln(\sigma(-\mathbf{h}_{u}^{\top}\mathbf{h}_{v'}))$$

graph-level pooling

$$\mathcal{L}^{graph}(\omega;\mathcal{S}_{\mathcal{G}}) = \sum_{c=1}^{k}$$

 $-\log(\sigma(\mathbf{h}_{\mathcal{S}_{\mathcal{C}}^{c}}^{ op}\mathbf{h}_{\mathcal{G}})) - \log(\sigma(-\mathbf{h}_{\mathcal{S}_{\mathcal{C}}^{c}}^{ op}\mathbf{h}_{\mathcal{G}'}))$

$$\mathcal{L}_{\mathcal{T}_{\mathcal{G}}}(heta;\mathcal{S}_{\mathcal{G}}) = \mathcal{L}^{graph}(\omega;\mathcal{S}_{\mathcal{G}}) + rac{1}{k} \sum_{1}^{k} \mathcal{L}^{node}(\psi;\mathcal{S}_{\mathcal{G}}^{c})$$

Dual Adaptation

Node-level adaptation $\psi' = \psi - \alpha \frac{\partial \sum_{c=1}^{k} \mathcal{L}^{node}(\psi; \mathcal{S}_{\mathcal{G}}^c)}{\mathcal{S}_{\mathcal{G}}^c}$

• Graph-level adaptation $\omega' = \omega - \beta \frac{\partial \mathcal{L}^{graph}(\omega; \mathcal{S}_{\mathcal{G}})}{\partial \omega}$

• Global optimization $\theta \leftarrow \theta - \gamma \frac{\partial \sum_{\mathcal{G} \in \mathcal{D}^{pre}} \mathcal{L}_{\mathcal{T}_{\mathcal{G}}}(\theta'; \mathcal{Q}_{\mathcal{G}})}{\partial \theta}$

Experiments & Analysis

Datasets

A new dataset for pre-training GNNs

Dataset	Biology	PreDBLP
#subgraphs	394,925	1,054,309
#labels	40	6
#subgraphs for pre-training	306,925	794,862
#subgraphs for fine-tuning	88,000	299,447

Baselines

- EdgePred
- DGI
- ContextPred
- AttrMasking

GNN Architectures

► GCN, GraphSAGE, GAT, GIN

Performance Comparison

- ► 6.27% and 3.52% improvements compared to the best baseline
- ▶ 8.19% and 7.88% gains relative to non-pretrained models
- negative transfer harms the generalization of the pre-trained GNNs

Comparative Analysis

- Centered Kernel Alignment (CKA) similarity between the parameters Smaller similarity, larger changes of model parameters
- changes in loss and performance (delta loss and RUC-AUC/Micro-

Smaller change, more easily achieve the optimal point

Ablation Study

- ► L2P-GNN-Node with only node-level adaptation
- ► L2P-GNN-Graph with only graph-level adaptation

Parameter Analysis

- the number of node- and graph-level adaptation steps (s, t)
- the dimension of node representations

Table 2: Experimental results (mean \pm std in percent) of different pre-training strategies w.r.t. various GNN architectures. The improvements are relative to the respective GNN without pre-training.

PreDBLP Biology Model **GCN GraphSAGE GAT GIN GCN** GraphSAGE **GAT GIN** No pre-train $|63.22\pm1.06|65.72\pm1.23$ 68.21 ± 1.26 64.82 ± 1.21 | 62.18 ± 0.43 61.03 ± 0.65 59.63 ± 2.32 69.01 ± 0.23 $|64.72\pm1.06\ 67.39\pm1.54\ 67.37\pm1.31\ 65.93\pm1.65\ |65.44\pm0.42\ 63.60\pm0.21$ 55.56 ± 1.67 DGI $|64.33\pm1.14|$ $|66.69\pm0.88|$ $|68.37\pm0.54|$ $|65.16\pm1.24|$ $|65.57\pm0.36|$ $|63.34\pm0.73|$ 61.30 ± 2.17 69.34 ± 0.09 ContextPred 64.56 ± 1.36 66.31 ± 0.94 66.89 ± 1.98 65.99 ± 1.22 $| 66.11\pm0.16$ 62.55 ± 0.11 69.37 ± 0.21 58.44 ± 1.18 AttrMasking | 64.35 ± 1.23 64.32 ± 0.78 67.72 ± 1.16 65.72 ± 1.31 65.49 ± 0.52 62.35 ± 0.58 53.34 ± 4.77 68.61 ± 0.16 **69.89**±1.63 **69.15** \pm 1.86 66.48 ± 1.59 **70.13** \pm 0.95 | **66.58** \pm 0.28 **65.84**±0.37 62.24 ± 1.89 70.79 ± 0.17 L2P-GNN (5.16%)(6.35%)(1.38%)(8.19%)(7.08%)(4.38 %) (2.58%)(7.88%)(Improv.)

Conclusions

- Problem: There exists a divergence between the pre-training and fine-tuning objectives, resulting in suboptimal pre-trained GNN models
- Solution: A self-supervised pretraining strategy for GNNs, L2P-GNN, which attempts to learn how to fine-tune in the pre-training process in the form of transferable prior knowledge
- **Dataset:** A new large-scale graph structured data for pre-training GNNs