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GNNs Pre-train GNNSs
> node-level representation > Pre-training
h) =¥ (y; A, X, Z)' on a large graph-structured dataset (e.g., multiple small graphs or a large-scale graph)
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> graph-level representation > Fine-tuning

hg = Q(w; H') = ReapouT({h!|v € V}) on downstream tasks 61 = 0y — nVe, L fme( foo; D)

0, Is pre-trained without accommodating the adaptation in fine-tuning

A gap between pre-training and fine-tuning!

| 2PGNN: Learn to Pre-train GNNSs

C1: How to narrow the gap caused by different optimization objectives? C2: How to simultaneously preserve node- and graph-level information?

> Existing methods fall into a two-step paradigm with a gap > SOTASs either only consider the node level or require supervision for graph-level pre-training
> Solution: learn to pre-train (meta learning) > Solution: intrinsic self-supervision
- E E Back i - '
Task Construction - Pa{r;r;tTaska} e kpropagation _o--o-...... Self-supervised Base Model
.. 1T gyt dgy i e Node-level A ion - L e Graph-level Pooling - | - '
» the pre-training data C | 0 &;(314 g;‘g:’r%thlon rap QE:;? H)oo ing ! > node-level aggregation
pre - onaTekTy L g={pwf T | LSy =
D — {gll gZJ ---IgN} ; r._.ql . Adaptation d RN %K_‘_ \ Lo - : TG
» Atask involving a graph . le—e® onsupportset; /" Ngu®, /IS N G 99y I (u,0) €8
g(sggp) - eel N zamen il B : - In(o(h[h)) ~ In(o(~hhw)
= ) . Su S § N SO S e /i iSupport Set : -
v Ve R BT ISR R B 1 » graph-level pooling
» gradient descent w.r.t. the loss on 59 ; g Optimization::‘ ,,,,,,, Node-level losson ... P Graph-level losson ... . P k
> optimize the performance on Qg :r.—. : ;:1 qu?;)br’set ,} sup:port/quer:y set sup:port/quelgy set i [araph (w; Sg) =2:1
: : .. .. : Aad I 6 R R i e boom oo L e ' c=
> SImUIatlng the tralnlng and teStIng In g — {V’ 8’ X, Z} . Query Set :___ Node-level Y Graph-level _/I - 10g(0’(h:9r5 hg)) - 10g(0’(—h:9r§ hg!))
the fine-tuning step 5 Qe 5 adaptation adaptation
w — w w’ W graph 1 . node c
(a) An Example of Graph | (b) Task Construction | (c) Dual Adaptation in Self-supervised Base Model L"Tg (9; Sg) =L (w; Sg) + E 2_:1 L (¢’ Sg)
s T T FFFEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE ~
| _ \
| Dual Adaptation :
k d raph(, ,.
| . %, L70% (4h; S OLI™P (w; S L 0 re L7, (0 !
' > Node-level adaptation 4" = 4 — o 2e= Wisg) Graph-level adaptationw’ = w — 3 wiSg) -, Global optimization g + 4 — ~ 2gepr L7573 Q9) |
| oY ow o0 !
\\ ________________________________________________________________________________________________________ 7/
Experiments & Analysis
Datasets Baselines Table 2: Experimental results (mean =+ std in percent) of different pre-training strategies w.r.t. various GNN architectures. The
A new dataset for pre-training GNNs > EdgePred improvements are relative to the respective GNN without pre-training.
Dataset Biology || PreDBLP: > DGl Model Biology PreDBLP
| E GCN GraphSAGE GAT GIN GCN GraphSAGE GAT GIN
#subgraphs 394,925 |1,054,309: > ContextPred ,
| i : No pre-train | 63.22+1.06 65.72+1.23 68.21+£1.26 64.82+1.21 |62.18+0.43 61.03+£0.65 59.63+2.32 69.01+0.23
#labels — 40 16 1, AttrMasking
#subgraphs for pre-training || 306,925 | 794,862 EdgePred |64.72+£1.06 67.39+1.54 67.37+1.31 65.93+£1.65|65.44+0.42 63.604+0.21 55.56+1.67 69.43+0.07
#subgraphs for fine-tuning || 88,000 || 299,447 | ~n\\ Architectures DGI  |64.33+1.14 66.69+0.88 68.37+0.54 65.16+1.24 | 65.57+0.36 63.34+0.73 61.30+2.17 69.34:+0.09

Sr— ContextPred | 64.564+1.36 66.3140.94 66.89+1.98 65.99+1.22|66.1140.16 62.55+0.11 58.44+1.18 69.37+0.21
» GCN, GraphSAGE, GAT, GIN  AttrMasking | 64.35£1.23 64.32+0.78 67.72+1.16 65.72£1.31 |65.49+0.52 62.35+0.58 53.34£4.77 68.612£0.16

Performance Comparison L2P-GNN |66.48+1.59 69.89+1.63 69.15+1.86 70.13+0.95 | 66.58-£0.28 65.84-£0.37 62.24-:1.89 70.79+0.17
(Improv.) | (5.16%)  (635%)  (138%)  (8.19%) | (1.08%)  (7.88%)  (438%)  (2.58%)

> 6.27% and 3.52% improvements compared to the best baseline

> 819% and 788% gaInS I’6|a'[lve '[O non-pl’etralned mOde|S @ L2P-GNN 4 ContextPred - AttrMasking * DGI # EdgePred | | M L2P-GNN [ ContextPred M Masking [ DGI M EdgePred
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0.74 "
2 09 0.6 2
. . = 3 5 063
Comparative Analysis E o3 2 04 :
» Centered Kernel Alignment (CKA) similarity between the parameters 2 07 02 ‘ 0'41 |
Smaller similarity, larger changes of model parameters . ) T N ) II
> Changes |n IOSS and perform ance (delta IOSS and RUC— AU C/ M|C|’O- .Layerl Layer2 Layer3 Layer4 Layer5 Delta Loss Delta RUC-AUC .Layerl Layer2 Layer3 Layer4 Layer5 Delta Loss Delta Micro-F1
F 1 Model change Evaluation change Model change Evaluation change
) _ _ _ _ (a) Biology dataset (b) PreDBLP dataset
Smaller change, more easily achieve the optimal point O R o
B L2P-GNN-Graph
71.0 | M L2P-GNN 20-721 70.0
Ablation Study s 50.70]
» L2P-GNN-Node with only node-level adaptation s §‘(’)Z§ e
» L2P-GNN-Graph with only graph-level adaptation 670 0_63_ 66.0 —
- 1010
65.0 64.0 g PreDlgiP
. Biology PreDBLP 2 0 0 10 50 100 300 500
Pal’am etel’ AnaIyS|S Dataset Biology ¥ PreDBLP : Dimension
> the number of node- and graph-level adaptation steps (s, t) (a) Ablation study. (b) Node- and graph-level adaptation steps (s, t). (c) Dimension analysis.

» the dimension of node representations

Conclusions

> Problem: There exists a divergence between the pre-training and fine-tuning objectives, resulting in suboptimal pre-trained GNN models

> Solution: A self-supervised pretraining strategy for GNNs, L2P-GNN, which attempts to learn how to fine-tune in the pre-training process in the form of transferable prior knowledge

> Dataset: A new large-scale graph structured data for pre-training GNNSs
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