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GNNS
> node-level representation
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> graph-level representation
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Background

Pre-train GNNSs
> Pre-training

on a large graph-structured dataset (e.g.,

Code and datasets can be found in https://yuanfulu.github.io

multiple small graphs or a large-scale graph)

0o = argmingy LP7¢( fg; DP"¢)

> Fine-tuning

on downstream tasks

01 = 00 — NV, L7 (fo,; D)

0, Is pre-trained without accommodating the adaptation in fine-tuning

A gap between pre-training and fine-tuning!

| 2PGNN: Learn to Pre-train GNNSs

C1: How to narrow the gap caused by different optimization objectives? C2: How to simultaneously preserve node- and graph-level information?

> Existing methods fall into a two-step paradigm with a gap

> Solution: learn to pre-train (meta learning)

Task Construction
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Experiments & Analysis
Baselines Table 2: Experimental results (mean =+ std in percent) of different pre-training strategies w.r.t. various GNN architectures. The
atasets
A new dataset for pre-training GNNs ~ » EdgePred improvements are relative to the respective GNN without pre-training.
Dataset Biology | PreDBLP| > DGI Model Biology PreDBLP
| | GCN GraphSAGE GAT GIN GCN GraphSAGE GAT GIN
#subgraphs 394,925 |1 1,054,309 > ContextPred _
| | : No pre-train | 63.224+1.06 65.724+1.23 68.21+£1.26 64.82+1.21|62.18£0.43 61.03£0.65 59.631+2.32 69.01£0.23
#labels — 40 16 1, AttrMasking
#subgraphs for pre-training || 306,925 | 794,862 EdgePred |64.72+1.06 67.39+1.54 67.37+1.31 65.93+1.65|65.44+0.42 63.60+0.21 55.56+1.67 69.43+0.07
fsubgraphs for fine-tuning || 88,000 || 299447 ©  ~\\\ Architectures DGI 64.33+1.14 66.69+0.88 68.37+0.54 65.16+1.24 | 65.57+0.36 63.34+0.73 61.30+£2.17 69.34+0.09
e ~ ContextPred | 64.56+1.36 66.31+:0.94 66.89+1.98 65.994+1.22 |66.11£0.16 62.55+£0.11 58.44+1.18 69.37+0.21
» GCN, GraphSAGE, GAT, GIN  AttrMasking | 64.35+1.23 64.32+0.78 67.72£1.16 65.72+1.31|65.49+0.52 62.35+£0.58 53.34+4.77 68.61+0.16
Performance Comparison Gmprovy | (516%)  (635%) (1% (819%) | (G088 (8% 8% (2559
» 6.27% and 3.52% improvements compared to the best baseline TPTOv 7 i oon 77 o7 oo I 0P
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> negative transfer harms the generalization of the pre-trained GNNs : o8 08
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Smaller change, more easily achieve the optimal point O R o
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» the dimension of node representations
Conclusions

; Parent Task :

> SOTAs either only consider the node level or require supervision for graph-level pre-training

> Solution: intrinsic self-supervision

__________________________ Backpropagation
on query set

Node-level Aggregation

=TT

Self-supervised Base Model
.1 > node-level aggregation

> Problem: There exists a divergence between the pre-training and fine-tuning objectives, resulting in suboptimal pre-trained GNN models

> Solution: A self-supervised pretraining strategy for GNNs, L2P-GNN, which attempts to learn how to fine-tune in the pre-training process in the form of transferable prior knowledge

> Dataset: A new large-scale graph structured data for pre-training GNNSs
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