Learning to Pre-train Graph Neural Networks

Yuanfu Lu¹, Xunqiang Jiang¹, Yuan Fang², Chuan Shi¹

¹Beijing University of Posts and Telecommunications, Beijing, China

²Singapore Management University, Singapore

Code and datasets can be found in https://yuanfulu.github.io

GNNs

node-level representation

 $\mathbf{h}_{v}^{l} = \Psi(\psi; \mathcal{A}, \mathcal{X}, \mathcal{Z})^{l}$ =UPDATE $(\mathbf{h}_{v}^{l-1},$ $\mathsf{AGGREGATE}(\{(\mathbf{h}_v^{l-1}, \mathbf{h}_u^{l-1}, \mathbf{z}_{uv}) : u \in \mathcal{N}_v\}))$

graph-level representation

 $\mathbf{h}_{\mathcal{G}} = \Omega(\omega; \mathbf{H}^l) = \operatorname{READOUT}(\{\mathbf{h}_v^l | v \in \mathcal{V}\})$

Background

Pre-train GNNs

Pre-training

on a large graph-structured dataset (e.g., multiple small graphs or a large-scale graph)

 $\theta_0 = \arg\min_{\theta} \mathcal{L}^{pre}(f_{\theta}; \mathcal{D}^{pre})$

Fine-tuning

on downstream tasks

 $\theta_1 = \theta_0 - \eta \nabla_{\theta_0} \mathcal{L}^{fine}(f_{\theta_0}; \mathcal{D}^{tr})$

 θ_0 is pre-trained without accommodating the adaptation in fine-tuning

A gap between pre-training and fine-tuning!

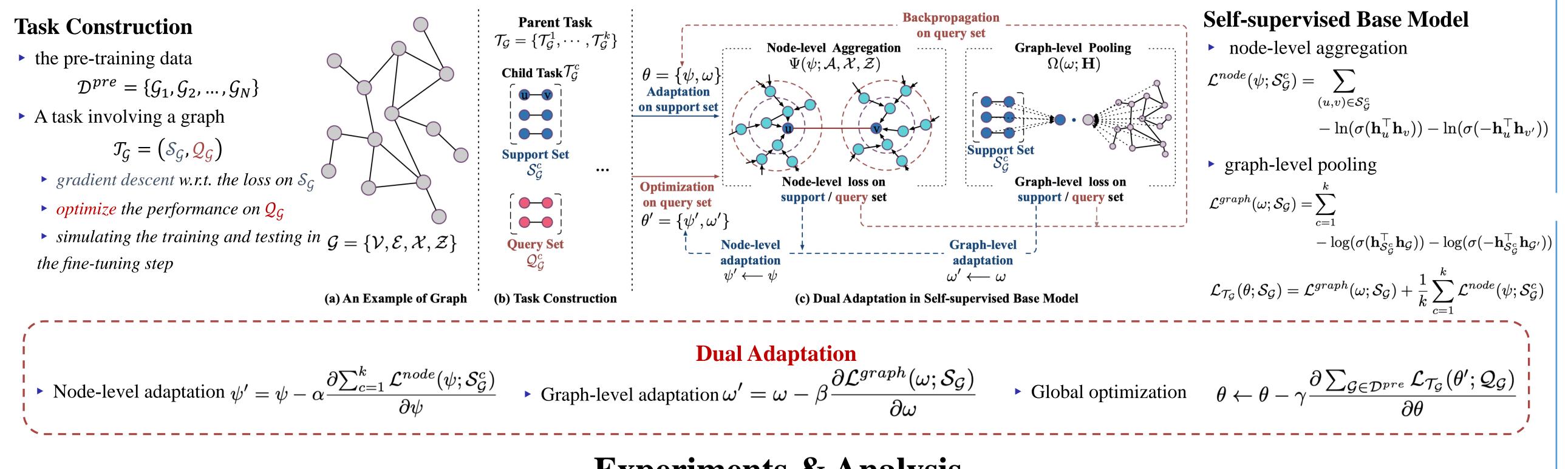
L2PGNN: Learn to Pre-train GNNs

C1: How to narrow the gap caused by different optimization objectives? C2: How to simultaneously preserve node- and graph-level information?

- *Existing methods fall into a two-step paradigm with a gap*
- SOTAs either only consider the node level or require supervision for graph-level pre-training

Solution: learn to pre-train (meta learning)

Solution: intrinsic self-supervision



Datasets

Baselines

A new datase	 EdgePred 	
Dataset	Biology PreDBLP	► DGI

6

794,862

299,447

Biology

394,925

40

306,925

88,000

PreDBLP	► DGI
1,054,309	 ContextPred

AttrMasking

GNN Architectures

► GCN, GraphSAGE, GAT, GIN

Performance Comparison

Dataset

#subgraphs

#labels

#subgraphs for pre-training

#subgraphs for fine-tuning

- ► 6.27% and 3.52% improvements compared to the best baseline
- ▶ 8.19% and 7.88% gains relative to non-pretrained models
- negative transfer harms the generalization of the pre-trained GNNs

Comparative Analysis

- Centered Kernel Alignment (CKA) similarity between the parameters Smaller similarity, larger changes of model parameters
- changes in loss and performance (delta loss and RUC-AUC/Micro-**F1**)

Smaller change, more easily achieve the optimal point

Ablation Study

- L2P-GNN-Node with only node-level adaptation
- L2P-GNN-Graph with only graph-level adaptation

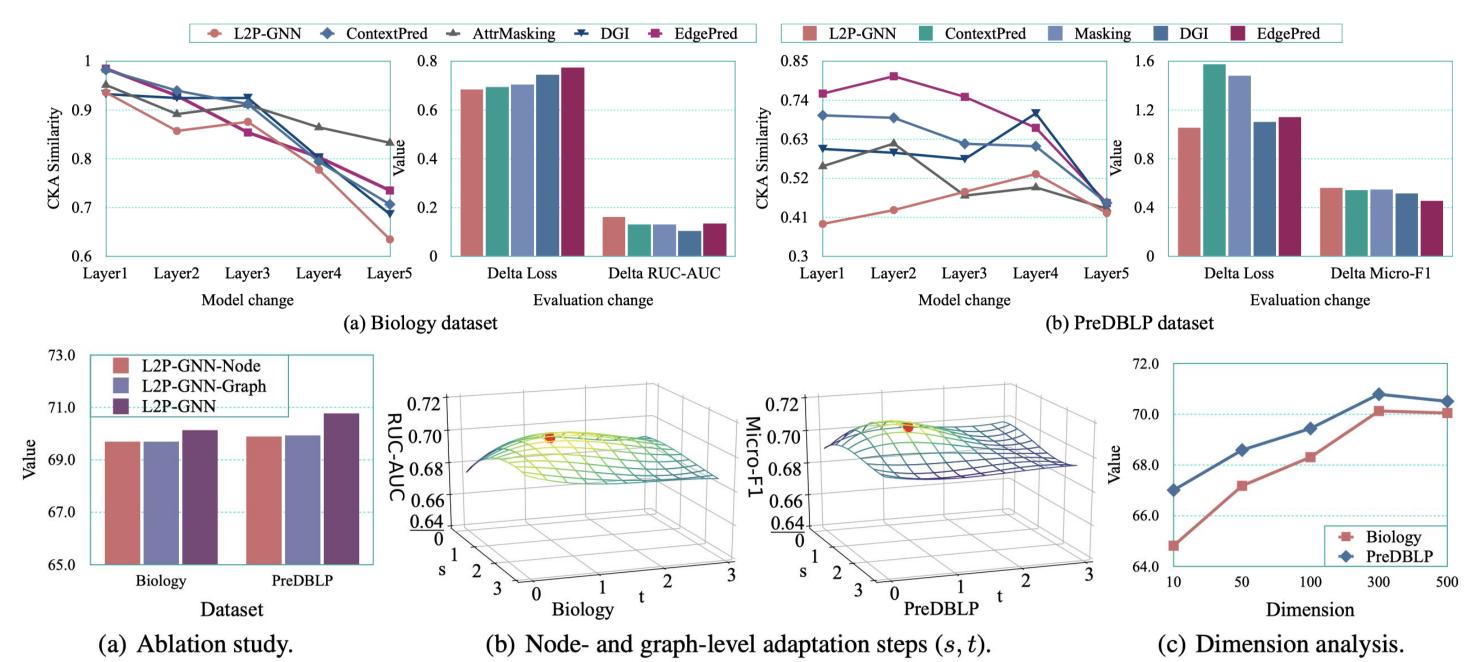
Parameter Analysis

- the number of node- and graph-level adaptation steps (s, t)
- the dimension of node representations

Experiments & Analysis

Table 2: Experimental results (mean \pm std in percent) of different pre-training strategies w.r.t. various GNN architectures. The improvements are relative to the respective GNN without pre-training.

Model	Biology			PreDBLP				
	GCN	GraphSAGE	GAT	GIN	GCN	GraphSAGE	GAT	GIN
No pre-train	63.22 ± 1.06	65.72±1.23	68.21±1.26	64.82±1.21	62.18±0.43	61.03±0.65	59.63±2.32	69.01±0.23
EdgePred	64.72±1.06	67.39±1.54	67.37±1.31	65.93±1.65	$ 65.44{\pm}0.42$	$63.60 {\pm} 0.21$	55.56±1.67	69.43±0.07
DGI	64.33 ± 1.14	$66.69 {\pm} 0.88$	$68.37 {\pm} 0.54$	65.16 ± 1.24	65.57±0.36	$63.34 {\pm} 0.73$	$61.30{\pm}2.17$	69.34±0.09
ContextPred	64.56 ± 1.36	66.31±0.94	$66.89 {\pm} 1.98$	65.99 ± 1.22	66.11±0.16	$62.55 {\pm} 0.11$	58.44 ± 1.18	69.37±0.21
AttrMasking	64.35±1.23	$64.32 {\pm} 0.78$	67.72±1.16	65.72±1.31	65.49±0.52	$62.35 {\pm} 0.58$	53.34±4.77	68.61±0.16
L2P-GNN (Improv.)	66.48±1.59 (5.16%)	69.89 ±1.63 (6.35%)	69.15 ±1.86 (1.38%)	70.13 ±0.95 (8.19%)	66.58±0.28 (7.08%)	65.84 ±0.37 (7.88%)	62.24 ±1.89 (4.38 %)	70.79 ±0.17 (2.58%)



Problem: There exists a divergence between the pre-training and fine-tuning objectives, resulting in suboptimal pre-trained GNN models

Solution: A self-supervised pretraining strategy for GNNs, L2P-GNN, which attempts to learn how to fine-tune in the pre-training process in the form of transferable prior knowledge

Dataset: A new large-scale graph structured data for pre-training GNNs

www.PosterPresentations.com

