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Background & Overview 

Graphs are prevalent in real-world datasets, for they can model not only individual data 
entities, but also interactions between these entities. Example graphs include the Web, 
social networks, transportation and telecommunication systems, scholarly citation 
networks, as well as protein interaction networks, entailing vast social, scientific, 
engineering and business significance. In particular, real-world graphs are often 
heterogeneous in nature, where there are different types of entity nodes, and different 
types of relationships between nodes. There could also be additional auxiliary information 
on nodes and edges, including structured attributes, unstructured texts or even audios 
and videos. Such graphs are often known as heterogeneous graphs or information 
networks. 

To gain insights into such data, my research (Figure 1) has undertaken learning and 
mining on graphs. In particular, I focus on three sub-areas: designing and learning graph 
representations, multi-modal graph-based learning, and data efficiency and scalability for 
learning on graphs.  

 

Figure 1: Overall research theme – Learning and mining on graphs. 

 

Research Areas  

A. Graph representations. 

Link-based approaches. My earlier research towards my PhD dissertation mainly 
revolves around directly utilizing graph structures in learning, i.e., link-based approaches. 
Unlike traditional flat data, graph structures explain complex interactions between data 
entities, and thus are crucial towards data-driven tasks. Leveraging on link structures, we 



 

 2

SMU Classification: Restricted 

investigated semi-supervised learning on graphs [ICML14]. The resulting graph-based 
probabilistic framework unifies the underlying principle in our previous random walk 
models [WSDM11, ICDE13]. We further considered heterogeneous graph structures 
[SIGIR12], as well as extended the learning objective on individual nodes to a set of nodes 
[ICDE16a]. In summary, link-based learning on graphs enable us to improve various tasks 
on graphs, including node classification and ranking, information extraction and data-
driven crawling. 

Semantic structure-based approaches. We also investigated higher-order semantic 
structures beyond simple link structures. In real-world scenarios, objects are often 
interlinked to form heterogeneous graphs, where different semantics exist between nodes. 
For instance, the below social network (Figure 2, left) contains users of different semantic 
relationships: some are classmates, some are family, and some are colleagues. The 
multitude of semantics arises from various types of nodes and their different interactions. 
We have proposed metagraph representations [ICDE16b] as a novel means to 
characterize these different semantic classes (Figure 2, right), which have shown very 
promising results in our studies on proximity ranking [ICDE16b] and node classification 
[Methods17]. Taking a step further, we have also explored metagraphs as a universal form 
of node and edge representations [TKDE19], demonstrating its superior performance in 
more downstream tasks including clustering and relationship prediction. Nevertheless, 
one limitation is the high computation complexity associated with the matching of 
metagraphs (i.e., counting of their instances) on large graphs. While using various 
heuristic pruning strategies can alleviate the problem, we plan to exploit machine learning-
based method to predict the number of metagraph instances on graphs in future work.  

            

Figure 2. (left) Example heterogeneous social network. (right) Example metagraphs. 

The community has also shown significant interest in leveraging metagraphs or similar 
semantic structures on heterogeneous graphs for representation learning through network 
embedding and graph neural networks. However, we observe that most prior approaches 
often under-utilize metagraphs, which are only applied in a pre-processing step and do 
not actively guide representation learning afterwards. In contrast, our recent work 
[TKDE20] proposes a novel framework called mg2vec, which learns the embeddings for 
metagraphs and nodes jointly. That is, metagraphs actively participate in the learning 
process by mapping themselves to the same embedding space as the nodes do, such 
that metagraphs are able to guide and constrain node embeddings during training. 

General graph representation learning. We have also investigated the general problem 
of representation learning for different kinds of graphs, using different techniques. 
Specifically, we have studied neighborhood propagation [ICDM18] and adversarial 
learning [KDD19] for heterogenous graphs, neural attention mechanism [ECMLPKDD20a] 
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and Hawkes process [ECMLPKDD21] for dynamic graphs, the integration of structures 
and attributes on attributed graphs [IPM20, SIGIR20], complementary graph 
representations from multiple views on multi-view graphs [TKDD21, JBHI21], and the 
node-wise localization of graph neural networks [IJCAI21]. In summary, these works all 
leverage artificial neural networks for graph representation learning. Due to the ability to 
fit complex, nonlinear functions, neural networks-based graph representation learning 
often achieve state-of-the-art performance in various domains such as bioinformatics 
[BMC18, JBHI21] and recommendation systems [SDM20, ECMLPKDD20a].  

B. Multi-modal graph-based learning. 

Many problem statements often involve other kinds of data in addition to explicit graph 
structures, including visual and textual data and social meta-data. These data either 
enable us to construct new graphs, or to complement existing graphs to improve learning 
or to enable new tasks. We refer such research as multi-modal graph-based learning. 
Exploiting multi-modal data with graphs is a form of data enrichment to bring in knowledge 
that are not directly available from labeled data. There is a general consensus in the 
community that current machine learning approaches suffer from a significant knowledge 
gap. Additional knowledge from multi-modal data can potentially narrow the gap.  

Vision & texts + Graph. In our work on object detection in images [IJCAI17], we exploit  
knowledge graphs to improve the visual detection task (Figure 3). In particular, knowledge 
graphs contain commonsense knowledge that relate different objects in images. An 
example piece of commonsense knowledge is that pets (e.g., cats) and furniture (e.g., 
table) often appear together. Such knowledge would improve detection recalls in home 
scenes: the detections of pet and furniture mutually reinforce each other, should one of 
them has low initial confidence. Alternatively, textual information, such as item 
descriptions in a recommendation scenario, can enrich the interactions between users 
and items to form a more dense graph structure, providing additional insights to boost 
recommendation performance [CIKM20a]. In another work, texts associated with graph 
nodes reveal multi-facet topical factors, which can guide finer-grained learning on graphs 
for both better model performance and interpretability [CIKM21b]. 

    

Figure 3. (left) An example task of object detection, to identify a dining table and a cat in the 
image. (right) Toy knowledge graph demonstrating the relationship between cats and tables. 

Social meta-data + Graph. In our entity linking study [TACL14], we construct spatial and 
temporal graphs for entities appearing on Twitter, so that entities that are close to each 
other in either space or time are connected based on the meta-data of the tweets (i.e., 
timestamp and geotagging of the tweet). The connections reveal the relatedness between 
entities, which proves beneficial to the entity linking task on Twitter. In a more recent work, 
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we attempt to enrich collaborative filtering with a novel form of social meta-data known as 
“friend referral circle” [ECMLPKDD20b], where users are recommended with items liked 
or shared by their circle of friends. Leveraging the unique friend referral circle enables a 
more accurate modeling of social factors (e.g., user behaviors are more influenced by their 
friends who appears more authoritative), beyond just the homophily effect assumed in 
conventional social recommendation. 

C. Data efficiency and scalability on graphs. 

Learning with data efficiency has always been an important research topic, and has  
gained particular traction in recent years due to the rise of deep learning which often 
require large-scale, high-density data for optimal performance. To address the over-
reliance on data, in particular on graphs, we have explored several directions of data 
efficiency. Besides, we have also studied the more conventional computational scalability 
problem on massive graphs. 

Data efficiency on structure-sparse graphs. First, for very sparse graphs where the 
number of edges relative to the number of nodes is extremely small, we investigate a dual 
dropout strategy on both nodes and edges for graph neural networks [BIOINF20], to 
increase the overall robustness of learning. Second, even if a graph is considered dense 
on the whole, there still exist tail nodes with very few links. In other words, an individual 
tail node has very scarce structural connectivity, despite the abundance of links on other 
nodes. In general, the node degrees vary considerably across the network and are not 
uniformly distributed (Figure 4, left). The lack of structural connectivity on a tail node 
makes its representation more difficult to learn than nodes with abundant links (Figure 4, 
right). Representation learning for the tail nodes is thus a challenging and novel problem. 
Inspired by meta-learning, we formulate the problem as a few-shot regression task in our 
work meta-tail2vec [CIKM20b], a first attempt on this problem to our best knowledge. 
However, meta-tail2vec is a two-stage method that improves the tail node embedding 
through a post-processing step. Thus, we further propose an end-to-end tail node 
representation learning framework for graph neural networks [KDD21a]. Similarly, cold-
start recommendation also suffers from the sparsity of links on new users and items. Thus, 
we formulate the cold-start problem as a few-shot link prediction task, and addressed it 
under the meta-learning paradigm as well [KDD20].  

                      

Figure 4. Relationship between node degree and the quality of learned representation on a typical 
graph. (left) Node degree distribution. (right) Classification performance w.r.t. node degrees. 

Data efficiency on label-scarce graphs. Like any other supervised machine learning 
models, state-of-the-art graph neural networks rely on a large number of labels for good 
performance. However, in reality, many tasks often lack abundant labeled data. One 
common scenario is the few-shot node classification task on a graph, in which some novel 
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classes only have one or few examples. For instance, on a scholarly citation network, 
while Markov chains is a mature topic with many labeled examples, algorithmic 
explainability and fairness is relatively new with few labeled examples. To address few-
shot learning on graphs, we resort to the framework of meta-learning, while simultaneously 
exploiting graph-specific characteristics including the long-range dependencies between 
nodes, and the global graph contexts [AAAI21a].  

In another line, inductive graph learning trains a model on similar graphs, and the trained 
model can be generalized to a new graph in the same feature space. The inductive ability 
of the trained model effectively reduces the need of labels on the new graph, as opposed 
to transudative graph learning where the labels on the new graph are crucial as no 
information from other graphs can be leveraged. In our meta-inductive model [SIGIR21], 
we exploit both optimization-based and hypernetwork-based meta-learning to enhance 
the inductive ability on node classification. To take one step further, we exploit the pre-
training of graph neural networks, which aims to learn a transferable prior from one or 
more graphs, to enable multiple downstream tasks with limited labeled data. In particular, 
the pre-trained model can generalize to different downstream tasks after a quick fine-
tuning process on each task with a small number of labels. Some of our works [KDD21, 
CIKM21b] attempt to design better pre-training objectives to improve the capturing of the 
transferable prior on graphs. We further note that conventional pre-training is decoupled 
from fine-tuning, causing a divergence between their optimization objectives. Thus, we 
propose the concept of learning to pre-train [AAAI21b], by integrating and aligning the pre-
training and fine-tuning stages under a meta-learning framework.  

Scalability of learning on graphs. Finally, we explore scalable computational 
frameworks for massive graphs. Our earlier work [VLDB13, VLDBJ15] investigated fast 
approximation algorithms for computing Personalized PageRank on large graphs. The 
algorithm can speed up over existing methods by several folds with high accuracy and 
excellent scalability. More recently, as network embedding and graph neural networks 
emerge as the de facto standard on graphs, we have attempted to accelerate graph 
representation learning via importance sampling on large-scale heterogeneous graphs 
[TKDD20]. The key idea is to design an effective sampler that is aware of the multitude of 
node and edge types and their complex inter-dependence.   
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